第1讲 速算与巧算(一)
计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:
86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。观察这些数不难发现,这些数虽然大小不等,但相差不大。我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:
6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。于是得到
总和=80×10+(6-2-3+3+11-
=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。为了清楚起见,将这一过程表示如下:
通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
例1所用的方法叫做加法的基准数法。这种方法适用于加数较多,而且所有的加数相差不大的情况。作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。由例1得到:
总和数=基准数×加数的个数+累计差,
平均数=基准数+累计差÷加数的个数。
在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
例2 某农场有10块麦田,每块的产量如下(单位:千克):
462,480,443,420,473,429,468,439,475,461。求平均每块麦田的产量。
解:选基准数为450,则
累计差=12+30-7-30+23-21+18-11+25+11
=50,
平均每块产量=450+50÷10=455(千克)。
答:平均每块麦田的产量为455千克。
求一位数的平方,在乘法口诀的九九表中已经被同学们熟知,如7×7=49(七七四十九)。对于两位数的平方,大多数同学只是背熟了10~20的平方,而21~99的平方就不大熟悉了。有没有什么窍门,能够迅速算出两位数的平方呢?这里向同学们介绍一种方法——凑整补零法。所谓凑整补零法,就是用所求数与最接近的整十数的差,通过移多补少,将所求数转化成一个整十数乘以另一数,再加上零头的平方数。下面通过例题来说明这一方法。
例3 求292和822的值。
解:292=29×29
=(29+1)×(29-1)+12
=30×28+1
=840+1
=841。
822=82×82
=(82-2)×(82+2)+22
=80×84+4
=6720+4
=6724。
由上例看出,因为29比30少1,所以给29“补”1,这叫“补少”;因为82比80多2,所以从82中“移走”2,这叫“移多”。因为是两个相同数相乘,所以对其中一个数“移多补少”后,还需要在另一个数上“找齐”。本例中,给一个29补1,就要给另一个29减1;给一个82减了2,就要给另一个82加上2。最后,还要加上“移多补少”的数的平方。
由凑整补零法计算352,得
35×35=40×30+52=1225。这与三年级学的个位数是5的数的平方的速算方法结果相同。
这种方法不仅适用于求两位数的平方值,也适用于求三位数或更多位数的平方值。
例4 求9932和20042的值。
解:9932=993×993
=(993+7)×(993-7)+72
=1000×986+49
=986000+49
=986049。
20042=2004×2004
=(2004-4)×(2004+4)+42
=2000×2008+16
=4016000+16
=4016016。
下面,我们介绍一类特殊情况的乘法的速算方法。
请看下面的算式:
66×46,73×88,19×44。
这几道算式具有一个共同特点,两个因数都是两位数,一个因数的十位数与个位数相同,另一因数的十位数与个位数之和为10。这类算式有非常简便的速算方法。
例5 88×64=?
分析与解:由乘法分配律和结合律,得到
88×64
=(80+8)×(60+4)
=(80+8)×60+(80+8)×4
=80×60+8×60+80×4+8×4
=80×60+80×6+80×4+8×4
=80×(60+6+4)+8×4
=80×(60+10)+8×4
=8×(6+1)×100+8×4。
于是,我们得到下面的速算式:
由上式看出,积的末两位数是两个因数的个位数之积,本例为8×4;积中从百位起前面的数是“个位与十位相同的因数”的十位数与“个位与十位之和为10的因数”的十位数加1的乘积,本例为8×(6+1)。
例6 77×91=?
解:由例3的解法得到
由上式看出,当两个因数的个位数之积是一位数时,应在十位上补一个0,本例为7×1=07。
用这种速算法只需口算就可以方便地解答出这类两位数的乘法计算。