09小升初数学例题详解(三)
例 A、B两站间的铁路长490千米,甲乙两列火车同时从这两站相对开出,甲车每小时行72千米,乙车每小时行68千米。相遇时,甲、乙两列火车各行了多少千米?
(广东省深圳市)
【分析1】根据“两地距离÷速度和=相遇时间”求出两车的相遇时间,再用两车的速度分别乘以相遇时间,即可分别求出两车各行了多少千米.
【解法1】两车经过几小时相遇?
490÷(72+68)=490÷140=3.5(小时)
甲上行了多少千米?
72×3.5=252(千米)
乙车行了多少千米?
68×3.5=238(千米)
综合算式:甲车: 72×[490÷(72+68)]
=72×[490÷140]
=72×3.5=252(千米)
乙车:490-252=238(千米).
【分析2】根据两列火车所行驶的时间相等,列方程解.
【解法2】设甲车行了x千米,则乙车行驶的路程为490-x.
140x=72×490
x=
x=252
乙车行程为:490-252=238(千米).
【分析3】因为“路程÷速度=时间”,时间一定,所以路程和时间成正比例,即甲乙两车的速度比恰是甲乙两车所行路程的比.由此可先求甲乙两车速度比,再按比例分配的方法分别求出甲乙两车各行的路程.
【解法3】甲乙两车所行路程的比?
72∶68=18∶17
甲车行了多少千米?
490×=490×=252(千米)
乙车行了多少千米?
490×=490×=238(千米)
综合算式:甲车:490×=252(千米)
乙车:490×=238(千米).
答:相遇时,甲车行252千米,乙车行238千米.
【评注】解法1是通常解法,易于理解和掌握.解法3是按比例分配解法,思路巧妙,运算简便,是本题的最佳解法.